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VII. Researches on the Partition of Numbers. By Artaur CavLEY, Esq.
Received April 14,—Read May 3 and 10, 1855.

I PROPOSE to discuss the following problem: “To find in how many ways a
number ¢ can be made up of the elements a, b, ¢,.. each element being repeatable an
indefinite number of times.” The required number of partitions is represented by
the notation P(a,b, ¢, ..)q,

and we have, as is well known,

1
(1—2"(1—2a?)(1—a)..’
where the expansion is to be effected in ascending powers of .

It may be as well to remark that each element is to be considered as a separate
and distinct element, notwithstanding any equalities which may exist between the
numbers @, b, ¢, .. ; thus, although a=6, yet a+a+a+ &c. and a4 a+b+ &c. are to
be considered as two different partitions of the number ¢, and so in all similar cases.

The solution of the problem is thus seen to depend upon the theory, to which I now
proceed, of the expansion of algebraical fractions.

P(a, b,c,..)g=coeflicient 27 in

Consider an algebraical fraction £,

Jx
where the denominator is the product of any number of factors (the same or different)
of the form 1—&”. Suppose in general that [1—a2™] denotes the irreducible factor
of 1—a™, 1. e. the factor which, equated to zero, gives the prime roots of the equa-
tion 1—a2”=0. We have
l—am=II[1—a™],

where m' denotes any divisor whatever of m (unity and the number m itself not
excluded). Hence, if a represent a divisor of one or more of the indices m, and %
be the number of the indices of which a is a divisor, we have

Jr=II[1—a"]"
Now considering apart from the others one of the multiple factors [1—a"]*, we
may write fe=[1—a"]"f .

Suppose that the fraction% is decomposed into simpler fractions, in the form
%:I(x)
) @R e
+&c., .

[28
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where 1(x) denotes the integral part, and the &c. refers to the fractional terms
depending upon the other multiple factors, such as [1—a“]*. The functions dz are
to be considered as functions with indeterminate coefficients, the degree of each
such functiou being inferior by unity to that of the corresponding denominator; and
it is proper to remark that the number of the indeterminate coefficients in all the
functions dx together is equal to the degree of the denominator fx.

The term (xbm)"“[l—z;j may be reduced to the form

9% S
[l_wu]k"l- [1—a° =i+ &e.,

the functions gx being of the same degree as dr, and the coefficients of these
functions being linearly connected with those of the function dx. The first of the
foregoing terms is the only tern on the right-hand side which contains the denomi-
nator [ 1—a°]*; hence, multiplying by this denominator and then writing [1—a*]=0,
we find

gr_

Ja=8%
which. is true when @ is any root whatever of the equation [1—a“]=0. Now by

means of the equation [1—a“] =O,‘% may be expressed in the form of a rational and
1

integral function G, the degree of which is less by unity than that of [1—2*]. We
have therefore Gx=gw, an equation which is satisfied by each root of [1—a"]=0,
and which is therefore an identical equation; ga is thus determined, and the
coeflicients of dx being linear functions of those of gx, the function dx may be con-
sidered as determined. And this being so, the function

oz vy bz

o~ @) T
will be a fraction the denominator of which does not contain any power of [1—a*]
higher than [1—a]*"'; and therefore 6,2 can be found in the same way as dx, and
similarly d,r, and so on. And the fractional parts being determined, the integral part

may be found by subtracting from ;—; the suin of the fractional parts, so that the

fraction %j can by a direct process be decomposed in the above-mentioned form.

Particular terms in the decomposition of certain fractions may be obtained with
great facility. Thus m being a prime number, assume

: b .
1—2)(1—2a%)..(1 —am) = &e. 4 =]’

then observing that (1—a")=(1—a)[1—a™], we have for [1—a"]=0,

1
1—az)(1—a?)..(L—am™ 1)

0.2?:(
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Now % being any quantity whatever and « being aroot of [ 1—a™ | =0,we have identically
[1—vw"]=(u—2)(u—2%)..(u—2™");
and therefore putting w==1, we have m=(1—2)(1—2a?)..(1—a™"),
and therefore
= l,
m

whence
1 1 1
== =) = &+ =]

Again, m being as before a prime number, assume

1 a
I—2)(1—29..0—a") &e. + [1—am]

we have in this case for [1—a™]=0,

1
b= i A=y

Now

ey e s . 1 1
which is immediately reduced to dr=_ ;—.

L] D=l = D) a2 (bt =) (1) am=2;

or putting u=1,

Mmoo — m—2,
—=m 14+m—2z..-42m2;

and substituting this in the value of dr, we find

-1 _ 1 (m—1)+(m—2)z.. +am2
l—2)(1—2%..(1—a™ — &e. + m? [1—am] )

The preceding decomposition of the fraction pz ives very readily the expansion of
p g p fu g y y p

the fraction in ascending powers of z. For, consider a fraction such as
b
[1—27
where the degree of the numerator is in general less by unity than that of the deno-
minator; we have
1—a*=[1—a"]II[1—2"],
where &' denotes any divisor of a (including unity, but not including the number
a itself). The fraction may therefore be written under the form

b2TI[1 —a”]
1—a*

where the degree of the numerator is in general less by unity than that of the deno-
minator, 4. e. is equal to a—1. Suppose that b is any divisor of a (including unity,
but not including  the number a itself), then 1—a°is a divisor of II[1—a*], and
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therefore of the numerator of the fraction. Hence representing this numerator by
A+Ax...+A, 2",
and putting a=bc, we have (corresponding to the case b=1)
A+A HA,.. . +A,_,=0,
and generally for the divisor 6,
A+A, A, ;=0
AHA . FA =0

Ab—1+A2b-1-- + Acb—1=0-
Suppose now that a, denotes a circulating element to the period a, i. e. write
a,=1 ¢=0 (mod. a)

a,=0 in every other case.
A function such as

Aoaq+A1aq—l oo +Au-—laq—-a+l

will be a circulating function, or circulator to the period a, and may be represented
by the notation :

(Ap A, ...A,_) circlor a,.

In the case however where the coefficients A satisfy, for each divisor b of the number
a, the above-mentioned equations, the circulating function is what I call a prime
circulator, and I represent it by the notation

(Ay, Ay, ..A,_) pera,.
By means of this notation we have at once '
. . 6
coefficient z, in ﬁ—_x—w;] =(A,, A,..A,_) peray,
and thence also
. . 8
coefficient x, in (zcbm)’tl—_%a-] =¢"(A,, A,..A,_) pera,.
Hence assuming that in the fraction % the degree of the numerator is less than that
of the denominator (so that there is not any integral part), we have
coeflicient «, in %:E q(Ay, Ay, .. .A,_) pera,;
or, if we wish to put in evidence the non-circulating part arising from the divisor a=1,
coefficient x, in%:Aq"“-{—Bq"“?... +Lg+M
+2 ¢ (A, A, .A,_) pera,;
where %k denotes the number of the factors 1—a™ in the denominator fr, e is any

divisor (unity excluded) of one or more of the indices m; and for each value of a
r extends from r=0 to r=Fk—1, where k denotes the number of indices m of which
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a is a divisor. The particular results previously obtained show, that m being a
prime number,

. . 1 1
coefficient 27 in A== (=)= &c.+~n—z( 1,—1,0,0,..) pcrm,,

and

. . ' 1 1
coeflicient 27 in =20 —xg)..(l—zm)=&c"+n7(m— l,—1,—1,..) pcrm,.

Suppose, as before, that the degree of gx is less than that of fx, and let the analy-
tical expression above obtained for the coefficient of 27 in the expansion in ascending

powers of x of the fraction %f be represented by Fg, it is very remarkable that if we

X . . . . . .
expand% in descending powers of x, then the coefficient of 27 in this new expansion

(g is here of course negative, since the expansion contains only negative powers of x)
is precisely equal to —Fg; this is in fact at once seen to be the case with respect to

each of the partial fractions into which%: has been decomposed, and it is conse-

quently the case with respect to the fraction itself *. This gives rise to a result of
some importance. Suppose that g2 and fx are respectively of the degrees N and D ;

it is clear from the form of fx that we have f(i):(-—)”w“ffx; and I suppose that px

is also such that gb(i):(i)”m““’@m; then writing D—N=h, and supposing that %
is expanded in descending powers of x, so that the coeflicient of 2? in the expansion
is —Fg, it is in the first place clear that the expansion will commence with the
term 2", and we must therefore have
Fg=0

for all values of ¢ from g=—1 to g=—(h—1).

Consider next the coefficient of a term 27"~ where ¢ is 0 or positive ; the coefficient
in question, the value of which is —F(—h—gq), is obviously equal to the coefficient

r

of #**? in the expansion in ascending powers of  of ——, i. e. to

19
()¥(—)P coefficient «"*¢ in "%ﬂ
or what is the same thing, to
(£)N(—)" coefficient 27 in
and we have therefore, g being zero or positive,
F(—h—g)=—(£)"(—)"Fq.
In particular, when gz=1, Fg=0

Pz,
okl
X

bE

* The property is a fundamental one in the general theory of developments.
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for all values of ¢ from g=—1 to g=—(D—1); and ¢ being 0 or positive,
F(—D—g)=(—)""'Fy. |
The preceding investigations show the general form of the function P(a, b,¢,...)q,
viz. that ‘
P(a,b,c,.)g=Aq"'+Bg**..4+Lg+M+3 ¢"(A,, A,, .. A,_) per 4,
a formula in which % denotes the number of the elements @, b, c, .. &c., and / is any
divisor (unity excluded) of one or more of these elements; the summation in the case
of each such divisor extends from »=0 to r=Fk—1, where %k is the number of the
elements a, b, ¢, ... &c. of which / is a divisor; and the investigations indicate how
the values of the coefficients A of the prime circulators are to be obtained. It has
been moreover in effect shown, that if D=a+b+c+.., then, writing for shortness
P(g) instead of P(a, b, c,..)q, we have
for all values of ¢ from g=—1 to g=—(D—1), and that ¢ being 0 or positive,
P(—D—g)=(—)"""P(g);
these last theorems are however uninterpretable in the theory of partitions, and they
apply only to the analytical expression for P(q).
I have calculated the following particular results :—

P(1, 2)q =%{2q+3
+(1,—1) pcr2q}
P(1, 2, 3)q =;/,l—2{6q2+369+47

+9(1, —1) per2,
+8(2,—1,—1) per Sq}

1
P(1,2, 3. 4)g =§—8§{2q3+3092+135q+175
+(99445)(1, —1) per 2,
+32 ' (1,0,—1)per3,
+36 (1,0,—1,0) per 4q}
P(1,2,3, 4, 5)q=m{30q4+900g3—|—9300q2+3825Oq+5065l |
-+(1350¢+10125) (1, —1) per2,
+3200 (2,—1,—1) per 3,
+5400 (1,1,—1,—1) per4,
+3456(4, —1,—1,—1, —1) per 5q}
1
+(1, —1) pcr2q}
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1
+3 (1,—1)per2,
+4(1,—1,0) per 3q}
1
P(2, 3, 4)¢q =5§§{692+54q+107

+(18¢+81)(1,— 1) pere2,
+32 (2,—1,—1)per3,

+36 (1,——1,—1,1)pcr4q}

P(2, 3, 4, 5)g =ﬁ126{293+42g2+267q+497
=+ (45¢-+315)(1, —1) per 2,
-+160 (1,—1,0) per3,
+180 (1,0,—1,0) per4,
+288 (1, —1,0,0,0) per 5q}

P2, 3, 4, 5, 6)q=i—7—21§66{1Oq‘+400q3+555Oq2+31000q+56877
+(450¢*-+9000g-4-39075)(1, —1) per 2,

432009 (1,—1,0) per 3,
+1600 (21, —19, —2) per 3,
+10800 (1,0, —1,0) per 4,

+6912  (4,—1,—1,—1,—1)per5,
+4800  (1,—1,—2,—1,1,2) per e,}
P(1, 2, 3, 5)q =7;;6{4qs+66qz+324q+451

+45 (1, —1) pere,
+80 (1, —1,0) per 3,

+144(1,0,0,0,—1) per 5;}

{6q“—|— 144¢°+ 11944439609 +4267
+(54¢*+6489-+41701)(1, —1) per 2,

L

P(1, 2,2, 3, 4)g=g575

+256 (2, —1, —1) per3,
+432 (1,0, —1,0) pcr4q}
, ] ’
+1 (1,—1) per2,
42 (1,0, —1,0) pcr4,

+8(1,0,0,0,—1,0,0,0) pcr Sq}

MDCCCLVI. T
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1
P(7, 8)9:11—2{2q+43

+7 (1, —1) per2,
+14 (1, —1,—1,1) per4,
+16(3,2,1,0, —1, —2, —3) per 7,
+56 (0,—1,—1,0,0,1,1,0) pchQ},

which are, I think, worth preserving.
Received April 14,—Read May 3 and 10, 1855.

I proceed to discuss the following problem : “To find in how many ways a number
¢ can be made up as a sum of m terms with the elements 0, 1, 2, ...k, each element
being repeatable an indefinite number of times.” The required number of partitions
is represented by

P(o, 1, 2, ..k)"q,
and the number of partitions of ¢ less the number of partitions of ¢—1 is repre-
sented by

P(o, 1, 2, ..k)mq.
We have, as is well known,

P(0, 1, 2, ..k)"g= coeflicient 272" in :

(1—2)(1—az)..(1—arz)’

where the expansion is to be effected in ascending powers of 3. Now

1 $ (1 _mk+1)(l f_‘z.k+2)

(l—z)(l——xz)..(l—x"z)_l—l— 1— z‘l' (1—2)(1—29 2+ &e.,

the general term being
(L—gh 1) (1 —ak+?) ., (1—ak+m)
(1—a)(1—2?)..(L—a™) =5

or, what is the same thing,

(1 _zm+l) (] _xm+2) . (1 ___wm+k) &M
(l_w)(l_wﬁ)“(l_'z.k) 5

and consequently
P(0, 1, 2, ..k)"g= coefficient 2* in

(1 _xm+1)(1 —,Z"”+2) ..(l—w”‘“"‘) .
(1=2)(1—27..(1—a") ?

to transform this expression I make use of the equation

— 23(1 —a®) (1 — zF—1
(1+a2) (14+a%).. (1 o) =142 T e S0 ey e,

where the general term is

(1—a¥) (1 —a*=).. (L —a=s+)

e o i=a) (=)
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and the series is a finite one, the last term being that corresponding to s=k#, viz.
#ENk Writing —a™ for 2, and substituting the resulting value of

(I=—a™* ) (1—a™*?) .. (1—amh)
in the formula for P(0, 1, 2, ..k)"q, we have
P(0, 1,2, ..k)’”q:)‘s{(—)s coefficient a7 in

) ZSmas.s+1
1=2)(1—2%)..(1—2) (1 —2)(1—2?)..(1 —a*+%) }’
where the summation extends from s= 0 to s=£k; but if for any value of s between
these limits sm-1s(s+1) becomes greater than ¢, then it is clear that the summation
need only be extended from s=0 to the last preceding value of s, or what is the same
thing, from s=0 to the greatest value of s, for which g—sm—1s(s+1) is positive or
zero.

It is obvious, that if ¢ > km, then

P(0, 1, 2..k)"g=0;
and moreover, that if 4 =~ Lkm, then
P, 1,2, ..ky"=P(0, 1, 2.. k)" . km—4,

so that we may always suppose ¢ == 3km. I write therefore g=35(km—a) where « is
zero or a positive integer not greater than km, and is even or odd according as km is
even or odd. Substituting this value of ¢ and making a slight change in the form of
the result, we have
PO, 1, 2..k)m—§—(km—w)=23{(—)s coeff, z#-om in

phoatds.stl
(1_x)(1—x2)..(1—mv)(1~x)(1—x2)..(1~wk—s)}’
where the summation extends from s=0 to the greatest value of s, for which
(3k—s)m—La—21s(s41) is positive or zero. But we may, if we please, consider the
summation as extending, when % is even, from s=0 to s=3k—1, and when £ is odd,

from s=0 to s=3%(k—1), the terms corresponding to values of s greater than the
greatest value for which (34 —s)m—3au—34s(s+41) is positive or zero, being of course
equal to zero. It may be noticed, that the fraction will be a proper one if
@< (k—s)(k—s41); or substituting for s its greatest value, the fraction will be a
proper one for all values of s, if, when £k is even, « <3k(k+42), and when £ is odd,
a<t(k4+1)(k+3).
We have in a similar manner,

P'(0,1,2... k)"g=coeflicient 272" in'(
which leads to
P, 1, 2..k)m%(km-—oc)=26{(—)" coeff, #-om in

11—z
1—2)(1—2z)..(1—a%z)’

PGl
(1—a%..1—a)(1—a)(1 —wa)..(l—w"“")}’
where the summation extends, as in the former case, from s=0 to the greatest value
of s, for which (3k—s)m—3e—1s(s41) is positive or zero, or, if we please, when £ is
even, from s=0 to s=1k—1, and when s is odd, from s=0 to s=}(k—1). The con-
dition, in order that the fraction may be a proper one for all values of s, is, when k is
even, a+1<1k(k+2), and when k is odd, e+1<E(k+1)(k+3).
T2
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To transform the preceding expressions, I write when k is odd 4? instead of z, and
I put for shortness 4 instead of Ltk—s or 2(3k—s), and y instead of fe-3s(s+41) or
a+s(s+1); we have to consider an expression of the forin

XY
. s
coefficient ™ in T’

where Fr is the product of factors of the form 1—a”. Suppose that ¢' is the least
common multiple of @ and 4, then (1 —2*) < (1—a“) is an integral function of , equal
xx suppose, and 1+ (1—a*)=xz -+ (1—a*). Making this change in all the factors of
Fa which require it (i. e. in all the factors except those in which a is a multiple of 4),
the general term becomes
'Ha
Gz
where G is a product of factors of the form 1—a“, in which o' is a multiple of 4,
i.e. G is a rational and integral function of 2°. But in the numerator »YHz we may
reject, as not contributing to the formation of the coefficient of 2%, all the terms in
which the indices are not multiples of 4; the numerator is thus reduced to a rational
and integral function of 2, and the general term is therefore of the form
A2f)
x@)

coefficient 2’ in

5

coefficient £°" in

or what is the same thing, of the form
] . Az
coefficient 2™ in v

Where zx is the product of factors of the form 1 —=z", and iz is a rational and integral
function of x, the particular value of the fraction depends on the value of s; and
uniting the different terms, we have an expression

cocfficient 2™ in S, (—)"%,
which is equivalent to
, ¢z
Jo’
where fz is a product of factors of the form 1—a° and ¢z is a rational and integral
function of x. And it is clear that the fraction will be a proper one when each
of the fractions in the original expression is a proper fraction, i.e. in the case of
P(0,1,2..k)"3(km—ea), when for k even w < 1k(k-+2), and for k odd & <3(k+1)(k+3);
and in the case of P'(0,1,2..k)"}(km—e«), when for k even a+1<21k(k-42), and for
kodd a1 <}(k+41)(k+3).
We see, therefore, that

coeflicient 2™ in

P(o,1,2.. k)y"i(km—ea),
and

P(0,1,2.. )"y (km—a),
are each of them of the form

. . Px
n
coeflicient ™ in Tz
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‘where fr is the product of factors of the form 1—2a°, and up to certain limiting values

of « the fraction is a proper fraction. When the fractionf,—myf is known, we may there-

fore obtain by the method employed in the former part of this Memoir, analytical
expressions (involving prime circulators) for the functions P and P'.

As an example, take P(0,1,2,3)"5m,

which is equal to

. . l
3m
coefficient 2" in 1= (=2 (1=

ficient ™ i :
—coetlicient « 1n(1_w2)(1_x2)(1_x4).

The multiplier for the first fraction is
(1—a8) (1 —2'2)
1—2%)(1—2%’
which is equal to 1 422422t 20 208 -2 -2,
Hence, rejecting in the numerator the terms the indices of which are not divigible

by 3, the first term becomes

. ) 148212
3m
coefficient 2°™ in 1—a%)(1—2?)(1—2°)’

or what is the same thing, the first term is
. R i A
coefficient 2™ in m 5

and the second term being
. s 2?
—coefficient 2™ in =P =%

n . . 1+4+a4
we have P(0, 1,2, 3)"3m = coeflicient a™ in ==

And similarly it may be shown, that

m . ™ r+a°
P(0,1,2,3)"3(3m—1)=coeflicient 2™ in A=A 0—a%

As another example, take P'(0,1,2,3,4,5)5m,
which is equal to

. ™ 1
coefficient 2° in = (1= (1 =) (1 —29)

Z’Q

P o s
—coeflicient *™ in =2 (=24 (1 =) (1—2*)

. m . ‘Z‘G -~
—+coefficient «™ in A=A (=N A=A =)

The multiplier for the first fraction is

(1—2%)(1 —2%0) (1 —a")
(1—a%)(1—2af)(1—a")

3
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which is a function of 2* of the order 36, the coefficients of which are
1,0,1,1,2,1,3,2,4,3,4,4,6,4,6,5,7,5,7,5,7,5,6,4,6,4,4,3,4,2,3,1,2,1,1,0, 1,
and the first part becomes therefore

P 14224 427+ 505 4 725 + 4270+ 322

The multiplier for the second fraction is

(1—a5)(1—21%)(1—2%)

(1=2?(Q1—2*(1—2%)°

which is a function of z* of the order 14, the coefficients of which are
1,1,2,1,3,2,3,1,3,2,3,1,2, 1, 1;

and the second term becomes

222+ 22+ 328+ 28+ 210 |

(1= =2 (1—2%) °

and the third term is  coefficient 2™ in = (1= (1 =)

~—coefficient 2™ in

- Now the fractions may be reduced to a common denominator
(1—2?)(1—2")(1 —2°)(1—2°)

—B
1_§‘e(=l+m’+x“ , and the terms

—28 :
of the third fraction by %—_—ﬁ;,(:l—}—x“); performing the operations and adding, the

numerator and denominator of the resulting fraction will each of them contain the
factor 1—2?; and casting this out, we find

. . 1—af 4212
P(0,1,2,3, 4, 5)"§m=coeflicient 2™ in = te

) (1—af)(1—a%)

I have calculated by this method several other particular cases, which are given in
my “Second Memoir upon Quantics;” the present researches were in fact made for
the sake of their application to that theory.

Received April 20,—Read May 3 and 10, 1855.

Since the preceding portions of the present Memoir were written, Mr. SYLVESTER
has communicated to me a remarkable theorem which has led me to the following
additional investigations*.

E4 . . .
Let % be a rational fraction, and let (x—a,)* be a factor of the denominator fr,

VAl

* Mr. SYLVESTER’S researches are published in the Quarterly Mathematical Journal, July 1855, and he has
there given the general formula as well for the circulating as the non-circulating part of the expressmn for the
number of partitions.—Added 23rd Februury, 1856.—A. C.

then if
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denote the portion which is made up of the simple fractions having powers of x—ux,
for their denominators, we have by a known theorem

x| N 1 oz, +2)
{fm}w,— coeflicient ~ in — =% et e)

Now by a theorem of Jacosr’s and Cavchy’s, -

. . '
coefficient ~ in Fx= coeflicient 7 in F(£)'¢;

whence, writing x,+z=x,e7¢, we have
Pl . 1. x 2,0t
{&} = coeﬂﬁment? in - I G
&y

fr —ze flze™t)
Now putting for a moment r=ux,¢’, we have
1 1 1 1

wl—xetzwl(l—e“‘):ml(l —e") +Be z 1—(1-—89) +...

and 0,=x9,, whence

.7,7;{—.29? 7 ~—m+1 +1 2(ra )2x e
the general term of which is
Ty (@)
Hence representing the general term of
21p(2167)
e

by yx,t7% so that
f(@e™)

R SR
x= coefficient 3 in ¢

we find, writing down only the general term

{f””} +H(s j (201 2

where the value of xz, depends upon that of s, and where s extends from s=1 to s=#.

Suppose now that the denominator is made up of factors (the same or different) of
the form 1—2™. And let a be any divisor of oue or more of the indices m, and let
k be the number of the indices of which a is a divisor. The denominator contains
the divisor [1—a"]", and consequently if ¢ be any root of the equation [1—a*]=0,
the denominator contains the factor ((—a)*. Hence writing ¢ for #, and taking the
sum with respect to all the roots of the equatlon [1—a“]=0, we find

¢$ §—1
ﬁ}n_ﬂ] +H( 5(@0) S X 4.
+11(s j (20,)" [1—x“]+

: — sont L in -1 9079
where xe= coefficient 7 in £~ e’
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and as before s extends from s=1 to s=%. We have thus the actual value of the
function 4z made use of in the memoir.
A preceding formula gives

el _ dent & in —— 279
{fw}x— coeflicient 7 I T e
o

which is a very simple expression for the non-circulating part of the fraction 3

This is, in fact, Mr. SYLVESTER’s theorem above referred to.



